p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.1M4(2), (C2×D4).2C8, (C2×C8).16D4, (C2×Q8).2C8, C23.C8⋊5C2, (C22×C8).6C4, C4.38(C23⋊C4), C2.11(C23⋊C8), C4.14(C4.D4), C22.16(C22⋊C8), (C2×M4(2)).144C22, (C2×C4).3(C2×C8), (C2×C4○D4).2C4, (C22×C4).59(C2×C4), (C22×C8)⋊C2.9C2, (C2×C4).343(C22⋊C4), SmallGroup(128,53)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.1M4(2)
G = < a,b,c,d,e | a2=b2=c2=e2=1, d8=c, dad-1=ab=ba, eae=ac=ca, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede=abcd5 >
Subgroups: 136 in 56 conjugacy classes, 20 normal (16 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C16, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C22⋊C8, M5(2), C22×C8, C2×M4(2), C2×C4○D4, C23.C8, (C22×C8)⋊C2, C23.1M4(2)
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C22⋊C4, C2×C8, M4(2), C22⋊C8, C23⋊C4, C4.D4, C23⋊C8, C23.1M4(2)
Character table of C23.1M4(2)
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 2 | 4 | 8 | 1 | 1 | 2 | 4 | 8 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | i | i | -i | -i | -i | i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | -i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | -i | i | i | i | -i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | i | -i | -i | i | linear of order 4 |
ρ9 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | i | -i | -i | i | -i | i | i | -i | ζ87 | ζ83 | ζ85 | ζ85 | ζ8 | ζ87 | ζ8 | ζ83 | linear of order 8 |
ρ10 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -i | i | i | -i | i | -i | -i | i | ζ85 | ζ8 | ζ87 | ζ87 | ζ83 | ζ85 | ζ83 | ζ8 | linear of order 8 |
ρ11 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | i | -i | -i | i | -i | i | i | -i | ζ83 | ζ87 | ζ8 | ζ8 | ζ85 | ζ83 | ζ85 | ζ87 | linear of order 8 |
ρ12 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | i | -i | -i | -i | i | -i | ζ8 | ζ8 | ζ87 | ζ83 | ζ83 | ζ85 | ζ87 | ζ85 | linear of order 8 |
ρ13 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | -i | i | i | i | -i | i | ζ87 | ζ87 | ζ8 | ζ85 | ζ85 | ζ83 | ζ8 | ζ83 | linear of order 8 |
ρ14 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -i | i | i | -i | i | -i | -i | i | ζ8 | ζ85 | ζ83 | ζ83 | ζ87 | ζ8 | ζ87 | ζ85 | linear of order 8 |
ρ15 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | -i | i | i | i | -i | i | ζ83 | ζ83 | ζ85 | ζ8 | ζ8 | ζ87 | ζ85 | ζ87 | linear of order 8 |
ρ16 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | i | -i | -i | -i | i | -i | ζ85 | ζ85 | ζ83 | ζ87 | ζ87 | ζ8 | ζ83 | ζ8 | linear of order 8 |
ρ17 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | -2i | 2i | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ20 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2i | -2i | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ21 | 4 | 4 | -4 | 0 | 0 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | 4 | -4 | 0 | 0 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 2ζ85 | 0 | 0 | 0 | 2ζ83 | 0 | 2ζ8 | 2ζ87 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 2ζ8 | 0 | 0 | 0 | 2ζ87 | 0 | 2ζ85 | 2ζ83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 2ζ83 | 0 | 0 | 0 | 2ζ85 | 0 | 2ζ87 | 2ζ8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 2ζ87 | 0 | 0 | 0 | 2ζ8 | 0 | 2ζ83 | 2ζ85 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 22)(2 23)(3 32)(4 17)(5 26)(6 27)(7 20)(8 21)(9 30)(10 31)(11 24)(12 25)(13 18)(14 19)(15 28)(16 29)
(2 10)(4 12)(6 14)(8 16)(17 25)(19 27)(21 29)(23 31)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(2 19)(4 29)(6 23)(8 17)(10 27)(12 21)(14 31)(16 25)(18 26)(20 28)(22 30)(24 32)
G:=sub<Sym(32)| (1,22)(2,23)(3,32)(4,17)(5,26)(6,27)(7,20)(8,21)(9,30)(10,31)(11,24)(12,25)(13,18)(14,19)(15,28)(16,29), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,19)(4,29)(6,23)(8,17)(10,27)(12,21)(14,31)(16,25)(18,26)(20,28)(22,30)(24,32)>;
G:=Group( (1,22)(2,23)(3,32)(4,17)(5,26)(6,27)(7,20)(8,21)(9,30)(10,31)(11,24)(12,25)(13,18)(14,19)(15,28)(16,29), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,19)(4,29)(6,23)(8,17)(10,27)(12,21)(14,31)(16,25)(18,26)(20,28)(22,30)(24,32) );
G=PermutationGroup([[(1,22),(2,23),(3,32),(4,17),(5,26),(6,27),(7,20),(8,21),(9,30),(10,31),(11,24),(12,25),(13,18),(14,19),(15,28),(16,29)], [(2,10),(4,12),(6,14),(8,16),(17,25),(19,27),(21,29),(23,31)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(2,19),(4,29),(6,23),(8,17),(10,27),(12,21),(14,31),(16,25),(18,26),(20,28),(22,30),(24,32)]])
Matrix representation of C23.1M4(2) ►in GL4(𝔽17) generated by
0 | 2 | 0 | 0 |
9 | 0 | 0 | 0 |
0 | 0 | 0 | 2 |
0 | 0 | 9 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
15 | 0 | 0 | 0 |
0 | 15 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 8 |
0 | 0 | 15 | 0 |
G:=sub<GL(4,GF(17))| [0,9,0,0,2,0,0,0,0,0,0,9,0,0,2,0],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[0,0,15,0,0,0,0,15,1,0,0,0,0,16,0,0],[1,0,0,0,0,16,0,0,0,0,0,15,0,0,8,0] >;
C23.1M4(2) in GAP, Magma, Sage, TeX
C_2^3._1M_4(2)
% in TeX
G:=Group("C2^3.1M4(2)");
// GroupNames label
G:=SmallGroup(128,53);
// by ID
G=gap.SmallGroup(128,53);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,422,723,352,1242,521,136,2804,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=e^2=1,d^8=c,d*a*d^-1=a*b=b*a,e*a*e=a*c=c*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=a*b*c*d^5>;
// generators/relations
Export